Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air.
نویسندگان
چکیده
We report the first observation of the strong effect of quantum rotational wave packets in atmospheric air on the long-range filamentary propagation of intense femtosecond laser pulses. In a pump-probe experiment, we find that the probe filament can be sucked into the pump filament's molecular quantum wake and trapped or be destroyed by it.
منابع مشابه
Synthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties
Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...
متن کاملStrong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity
This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.
متن کاملDetection of Cu2+, Degradation of Acid Brown and Removing Cd2+ from the Water by High Photoluminescence Carbon Dots Synthesized from Milk
In this experimental work, nitrogen-doped carbon quantum dots were successfully synthesized with hydrothermal of the milk. The product was composed of a powder and a stable colloid. The structure of the product was examined by XRD, EDS and FT-IR analysis. Also the particle size of the product was investigated by SEM and TEM images and the results showed the product is mainly composed of the par...
متن کاملWavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملWavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 101 20 شماره
صفحات -
تاریخ انتشار 2008